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Search strategy 

We searched MEDLINE, EMBASE, and CENTRAL using truncated versions of generic and 

trade names of non-steroidal anti-inflammatory drugs and acetaminophen combined with the 

first two steps of the Cochrane methodological filter.
1
 In addition, we searched proceedings of 

major rheumatological and oncological conferences (American College of Rheumatology, 

American Society of Clinical Oncology, European League Against Rheumatism, 

Osteoarthritis Research Society International), study registries (www.clinicaltrials.gov, 

www.controlled-trials.com, www.actr.org.au, www.umin.ac.jp/ctr, 

www.clinicaltrialresults.org), and the FDA website (www.fda.gov) using truncated versions 

of generic and trade names of non-steroidal anti-inflammatory drugs and acetaminophen. We 

manually searched reference lists of relevant articles and retrieved reports citing relevant 

articles via the Science Citation Index. Finally, we used the Google search engine 

(www.google.com) to identify additional reports and information sources by using acronyms 

of identified trials combined with the relevant intervention names. The search was last 

updated in December 2008. 

Calculation of patient-years 

If patient-years were not reported for a particular outcome we approximated them according 

to the following hierarchy: 

1. Median of patient-years of other outcomes within the same trial arm 

2. Patient-years = number of patients * mean follow-up duration of the trial 

3. Patient-years = (number of patients not withdrawn * planned follow-up duration) + 

(number of patients withdrawn * planned follow-up duration / 2) 

4. Number of patients * planned follow-up duration 

Technical implementation in WinBUGS 

The model used for all analyses and its implementation in WinBUGS is described in detail by 

Cooper et al.
2
 It is based on multivariable Bayesian hierarchical random effects models

3
 for 

mixed multiple treatment comparisons.
4
 Basically, the model consists of two levels: the level 

of comparison and the level of trials. The model included a random effect at the level of trials 

with two basic assumptions. First, for the main analysis it was assumed that log rate ratios are 

from the same common distribution (see also Additional analyses below). The second 

assumption was that relative treatment effects add. For example, the log rate ratio comparing 

placebo with celecoxib was deemed to be predictable from the log rate ratios of placebo 

versus naproxen and naproxen versus celecoxib. 

Analyses were done with Markov chain Monte Carlo simulation methods with vague prior 

distributions.
5
 Convergence was deemed to be achieved if plots of the Gelman-Rubin 

statistics indicated that widths of pooled runs and individual runs stabilized around the same 

value and their ratio around one.
6
 Given these criteria, we based our calculations on the 
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50,001 to 100,000 iteration, discarding the first 50,000 iterations as so-called burn-in. The 

median of the posterior distribution represents the rate ratio for each comparison. In analogy 

to 95% confidence intervals, we estimated 95% credibility intervals from the 2·5th and 97·5th 

percentiles of the posterior distribution. Rate ratios below one indicate a benefit of the 

respective preparation. 

WinBUGS code for main analysis 

model {   

 

 for(i in 1:ns){ 

  for (k in (na[i]+1):3){ 

   dev[i,k] <- 0 

  } 

 } 

 

 for(i in 1:ns){  

  w[i,1] <- 0 

  delta[i,t[i,1]] <- 0 

   

# vague priors for trial baselines 

  mu[i] ~ dnorm(0,0.001) 

 

  for (k in 1:na[i]){ 

  

# likelihood function 

   r[i,t[i,k]] ~ dpois(lambda[i,t[i,k]]) 

  

# evidence synthesis model  

   log(lambda[i,t[i,k]]) <- log(py[i,t[i,k]]/1000) + mu[i] + delta[i,t[i,k]]  

 

   rhat[i,t[i,k]] <- lambda[i,t[i,k]] 

 

# deviance 

dev[i,k] <- 2*(r[i,t[i,k]]*log(r[i,t[i,k]]/rhat[i,t[i,k]]) - (r[i,t[i,k]] - 

            rhat[i,t[i,k]]))  

  

# residuals 

   res[i,t[i,k]] <- (r[i,t[i,k]] - rhat[i,t[i,k]])/sqrt(rhat[i,t[i,k]])  

 

  } 

  

  for (k in 2:na[i]){ 

 

# trial specific log rate ratio 

   delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]])  

 

# mean log rate ratio 

   md[i,t[i,k]] <- d[t[i,k]] - d[t[i,1]] + sw[i,k]  

 

# adjustment for multi-arm trials 

   w[i,k] <- delta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]] 

   sw[i,k] <- sum(w[i,1:k-1]) /(k-1) 

 

# precision (inverse variance) of mean log rate ratio 

   taud[i,t[i,k]] <- tau*2*(k-1)/k 

 

  } 

 }  

  

 for (k in 1:3){ 

 

# total residual deviance 

  vecresdev[k] <- sum(dev[,k])   

 } 

 resdev <- sum(vecresdev[]) 

 

# define placebo as reference 

 d[1] <- 0 

 

 for (k in 2:nt){ 
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# vague priors for basic parameters 

  d[k] ~ dnorm(0,0.001)   

 } 

 

# vague prior for random effects standard deviation 

 sd ~ dunif(0,2)   

 tau <- 1/pow(sd,2) 

 tau2 <- 1/tau 

 

} 

Confidence levels, calculation of association between cox-2 selectivity and 

treatment effect, and numbers needed to treat 

Posterior distributions were used for deriving confidence levels i.e. posterior probablilities, 

ranks and linear regression coefficients:  

− A confidence level for a specific rate ratio was derived by dividing the number of 

iterations resulting in a rate ratio of at least the specific value divided by the overall 

number of iterations (50,000). For example, 6536 iterations showed a rate ratio larger 

than 1.2 for the outcome myocardial infarction and the comparison between naproxen 

and placebo. Consequently, the corresponding posterior probability is 6536 / 50,000 = 

15%. 

− At each iteration, the association between COX-2 specificity of each intervention
7
 and 

the rate ratio for the corresponding intervention against placebo was derived using 

standard linear regression. Median values of the regression coefficient for each outcome 

were used to derive the final regression coefficient with 2.5% and 97.5% percentiles to 

derive the accompanying 95% credibility intervals. 

− To calculate numbers needed to treat (NNT) we considered a population with 

hypothetical baseline risks.
8
 The baseline risk chosen corresponds approximately to the 

risk in elderly patients with rheumatoid arthritis.
9,10

 At each iteration, the corresponding 

number needed to treat was calculated using the following formula: NNT = 1 / (baseline 

risk – rate ratio * baseline risk). Median values of numbers needed to treat for each 

outcome were used to derive the final number needed to treat with 2.5% and 97.5% 

percentiles to derive the accompanying 95% credibility intervals. 

Assessment of model fit, between trial heterogeneity, and inconsistency 

We used three criteria to assess whether the model provided adequate fit to the underlying 

data. All are based on the residual deviance:
2,11

 

− The mean of the residual deviance should be approximately similar to the number of 

data points used in the model. The following interpretations were used for assessment: 

For large numbers of data points (n) residual deviance approximately follows a chi-

squared distribution with degrees of freedom given by the number of observations and 

with variance twice the number of data points. Mean residual deviance lying within ± 

1.96 * SQRT(2 * n) of the number of data points were deemed "adequate". 
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− At least 95% of means of standardized node-based residuals should be within ± 1.96 of 

the standard normal distribution. The following interpretations were used for 

assessment: Model fit was deemed "adequate" if at least 95% of residuals were within ± 

1.96 of the standard normal distribution. 

− Normal plots of residuals lied closely around a line on visual inspection. 

In our primary analysis we assumed for each outcome one common heterogeneity parameter 

τ
2
 across comparisons. The parameter τ

2
 corresponds to the variance of the underlying 

distribution and is difficult to interpret. However, based on a ratio of rate ratios of two 

randomly drawn trials from this underlying distribution, we considered τ
2
 = 0.4 as indicating 

"substantial" heterogeneity (corresponding to a ratio of rate ratios of 2.0), τ
2
 = 0.14 as 

"moderate" heterogeneity (ratio of rate ratios of 1.5), and τ
2
 = 0.04 as "low" (ratio of rate 

ratios of 1.25).
12

 For each τ
2
 we estimated 95% credibility intervals. To assess the robustness 

of results we also implemented models which assumed that τ
2
 could vary across different 

comparisons of each active preparation with placebo (see Additional analyses below).  

We used inconsistency factors as previously described to assess the consistency of the 

network i.e. the concordance of direct randomized comparisons within trials and indirect 

comparisons between trials.
11

 Inconsistency factors can be interpreted as the difference 

between direct and indirect comparisons measured on the log rate ratio scale. Their number is 

restricted to the number of independent closed loops in the network. The inconsistency factors 

and their corresponding loops are provided in webappendix 2. For ease of interpretation we 

back-transformed inconsistency factors to ratios of rate ratios and expressed inconsistency as 

percentage difference in rate ratios between direct and indirect comparisons. Values can range 

from 0% to infinity. A value near 0% indicates that all the comparisons in the network are 

consistent, showing fully coherent estimates of rate ratios comparing any two interventions. 

The more the value deviates from 0%, the more inconsistent the network. Values of 100% 

might be interpreted as "substantial" inconsistency (corresponding to a ratio of rate ratios of 

2.0), values of 50% as "moderate" (ratio of rate ratios of 1.5), and values of 25% as "low" 

inconsistency (ratio of rate ratios of 1.25). For each inconsistency factor we estimated 95% 

credibility intervals.  

Additional analyses 

1. Sensitivity analyses were performed by restricting the analysis to trials a) with external 

adjudication of events; b) in patients with musculoskeletal conditions; and c) to trials 

were the use of low dose Aspirin was allowed. Adequate concealment of allocation and 

blinding of patients and healthcare providers were not considered since all trials 

fulfilled these criteria. In addition, we were not able to restrict the analysis to trials with 

intention-to-treat analysis because only 13 trials fulfilled this criterion leaving too few 

trials and events for the analysis. 
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2. To explore the influence of our inclusion criteria we restricted the analyses 1) to trials 

with a minimum number of patient-years per trial arm of 500 and 2) to interventions 

with at least 50 accumulated myocardial infarctions in eligible trials. 

3. We explored a potential dosage effect by classifying trials using dosages below the 

maximum approved dosage as low/moderate dose trials and trials using maximum 

approved dosages or higher dosages as high dose. Because the number of low/moderate 

dose trials was low we excluded low/moderate dose trials and restricted analyses to high 

dose trials. 

4. A common heterogeneity parameter τ
2
 was assumed across all comparisons in our main 

analyses and we checked the robustness of this assumption by 1) trying to implementing 

also a model where between-trial variance τ
2
 was modeled for each comparison 

separately; and 2) by implementing a fixed effects model. 

5. Finally, we performed analyses with trials identified as outliers excluded. Outliers were 

defined as trials with means of standardized node-based residuals outside ± 1.96 of the 

standard normal distribution. 

Standard random-effects meta-analyses 

We calculated Bayesian random-effects meta-analyses for all available direct comparisons.
13

 

Comparisons with zero events in both groups were excluded from the analysis. Rate ratios 

were used as measure of treatment effects.  
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